I have $$\ln y =\lim_{n\to\infty}{1\over2n}\sum^n_{k=1}\ln\left(1+\frac{2k-1}{2n}\right)\\=\frac12\lim_{n\to\infty}{1\over n}\sum^n_{k=1}\ln\left(1+\frac{k-1/2}{n}\right)$$
Can I just ignore the $-{1\over2n}$ part (inside $\ln$) and evaluate this as $$\ln y =\frac12\int_0^1\ln(1+x)\,dx$$$$\implies y=\frac2{\sqrt e}$$
Why?/ Why not?