Let $\phi(x)=\begin{cases}0, & 0\lt x\lt 1\\ 1, & 1\lt x\lt3 \end{cases}$
We have that the Fourier cosine series is given by $$\phi(x)=\begin{cases}0, & 0\lt x\lt1\\ \frac{4}{3}+\displaystyle\sum_{m=1}^{\infty}\frac{-2\sin\frac{m\pi}{3}}{m\pi}\cos\frac{m\pi x}{3}, & 1\lt x\lt3 \end{cases}$$
Put $x=0$ to find the sum
$\displaystyle 1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{8}-\frac{1}{10}-\frac{1}{11}+\cdots$
I tried the following
$$\phi(0)=\frac{4}{3}+\sum_{m=1}^{\infty}\frac{-2\sin\frac{m\pi}{3}}{m\pi}\\=\frac43-2\frac{\sin\frac{\pi}{3}}{\pi}-\frac{\sin\frac{2\pi}{3}}{\pi}-2\frac{\sin\pi}{3\pi}-\frac{\sin\frac{4\pi}{3}}{2\pi}-\cdots\\=\frac{4}{3}-\frac{\sqrt3}{\pi}-\frac{\sqrt3}{2\pi}-0+\frac{\sqrt3}{4\pi}\dots=\frac{4}{3}-\frac{\sqrt3}{\pi}(1+\frac{1}{2}-\frac{1}{4}\dots)=\ ? $$
And I'm stuck here,
What can I do here?
I greatly appreciate any assistance you may provide.