Consider the function $$f(x)= \begin{cases}0&\text{if }x\in\Bbb{R}\setminus\Bbb{Q}~\text{or}~x=0\\\frac{1}{q}&\text{if }x=\frac{p}{q}, p\in\Bbb{Z},q\in\Bbb{N},(p,q)=1\end{cases}$$
Of course this function is discontinuous at rational numbers. To show it is continuous at irrational numbers I need: If $x_n\to x$, with $x_n=\frac{p_n}{q_n}$, and $x_n\ne x,n\in\Bbb{N}$, then $\lim_{n\to\infty} q_n=\infty$.
How to do that?