Given
$$
g(x,n) = {{\Delta _n \,f(x,n)} \over {\Delta _n \,x^{\,1/2^{\,n} } }} \quad \quad
f(x,n) = {1 \over {\left( {8\left( {x^{\,1/2^{\,n} } + h^{\,4} } \right)} \right)^{\,1/4} }} + {{x^{\,1/2^{\,n} } } \over {h + 1}} + {h \over {x^{\,1/2^{\,n} } + 1}}
$$
you are, possibly, looking for something like this
$$
\eqalign{
& \mathop {\lim }\limits_{x \to 1} g(x,n)
= {{\Delta _n \,\mathop {\lim }\limits_{x \to 1} f(x,n)} \over {\Delta _n \,\mathop {\lim }\limits_{x \to 1} x^{\,1/2^{\,n} } }}
= {{\Delta _n \,\mathop {\lim }\limits_{dx \to 0} f(1 + dx,n)} \over {\Delta _n \,\mathop {\lim }\limits_{dx \to 0} \left( {1 + dx} \right)^{\,1/2^{\,n} } }} = \cr
& = \mathop {\lim }\limits_{dx \to 0} {{\Delta _n \,\left( {f(1,n) + f'(1,n)dx} \right)} \over {\Delta _n \,\left( {1 + {1 \over {2^n }}dx} \right)}}
= \mathop {\lim }\limits_{dx \to 0} {{\,\Delta _n f(1,n) + \Delta _n f'(1,n)dx} \over { - {1 \over {2^{n + 1} }}dx}} = \cr
& = - 2^{n + 1} \Delta _n f'(1,n) \cr}
$$
since
$$
\Delta _n f(1,n) = 0
$$
It turns out that
$$
\eqalign{
& \mathop {\lim }\limits_{x \to 1} g(x,n) = - 2^{n + 1} \Delta _n f'(1,n) = \cr
& = {1 \over {h + 1}} - {1 \over {2^{\,11/4} \left( {h^{\,4} + 1} \right)^{\,5/4} }} - {h \over 4} \cr}
$$
and it does not depend on $n$.