Find value of:
$$\displaystyle \tan\bigg(\frac{\pi}{25}\bigg)\cdot \tan\bigg(\frac{2\pi}{25}\bigg)\cdot \tan\bigg(\frac{3\pi}{25}\bigg)\cdots\cdots \tan\bigg(\frac{12\pi}{25}\bigg)$$
The solution I tried:
Assume $$P = \tan\bigg(\frac{\pi}{25}\bigg)\cdot \tan\bigg(\frac{2\pi}{25}\bigg)\cdot \tan\bigg(\frac{3\pi}{25}\bigg)\cdots\cdots \tan\bigg(\frac{12\pi}{25}\bigg),$$ with the help of $\tan(\pi-\theta)=-\tan \theta$, then $$P=\tan\bigg(\frac{13\pi}{25}\bigg)\cdot \tan\bigg(\frac{14\pi}{25}\bigg)\cdot \tan\bigg(\frac{15\pi}{25}\bigg)\cdots\cdots \tan\bigg(\frac{24\pi}{25}\bigg)$$ which gives $$P^2=\prod^{24}_{r=1}\tan\bigg(\frac{r\pi}{25}\bigg).$$
How do I proceed from here?