If a group is generated by an element does that mean the generator commutes with all the other elements or does it mean that because the group is cyclic(as it has a generator) that all elements commute with each other.
For example, I am trying to find the conjugacy classes of the group D4 and am not sure if I could use the property that elements commute with each other. It seems to be taking too long so I was wondering what would be some facts I could be using?
From the notation below I understand that D4 is generated by a and b. So, is it only these two elements that commute with the others? $$ D_4=\langle a, b\rangle=\{e, a, a^2, a^3, b, ab, a^2b, a^3b\} $$