$$\lim_{x\to\infty}\left(x-x^2\ln\frac{x+1}{x}\right)$$ What I did: $l=\lim_{y\to 0}\frac{y-\ln(y+1)}{y^2}$, putting $y=\frac{1}{x}$. The answer seems to be $1/2$ but how do I get to that?
Asked
Active
Viewed 183 times
0
-
See https://math.stackexchange.com/questions/387333/are-all-limits-solvable-without-lh%C3%B4pital-rule-or-series-expansion – lab bhattacharjee May 18 '18 at 12:36
4 Answers
1
By de l'Hôpital $$\lim_{y\to 0}\frac{y-\ln(y+1)}{y^2} =\lim_{y\to 0}\frac{1-\frac{1}{y+1}}{2y}=\lim_{y\to 0}\frac{1}{2(y+1)}.$$
Gibbs
- 8,230
C. Dubussy
- 9,120
1
Taylor:
$$\frac{y-\ln(y+1)}{y^2} = \frac{y - (y-\frac{y^2}{2} + O(y^3))}{y^2}=\frac{1}{2} +O(y) \stackrel{y\rightarrow 0^+}{\longrightarrow} \frac{1}{2}$$
trancelocation
- 32,243
1
By Taylor’s expansion
- $\ln\frac{x+1}{x}=\ln (1+1/x)=\frac 1x-\frac12x^2+o(x^{-2})$
then
$$x-x^2\ln\frac{x+1}{x}=\frac12+o(1)\to -\frac12$$
user
- 154,566
1
Use Taylor's formula at order $2$ for the log:$$\ln\frac{x+1}x=\ln\Bigl(1+\frac1x\Bigr)=\frac1x-\frac1{2x^2}+o\Bigl(\frac1{x^2}\Bigr),$$ so $$x-x^2\ln\frac{x+1}x=x-x^2\Bigl(\frac1x-\frac1{2x^2}+o\Bigl(\frac1{x^2}\Bigr)\Bigr)=x-x+\frac12-x^2o\Bigl(\frac1{x^2}\Bigr)=\frac12+o(1)\to\frac12.$$
Bernard
- 175,478