I have the following assertion to be proved for $a_n > 0, \forall n \in \mathbb{N}$:
$$ \underset{n \rightarrow \infty}{\mathrm{lim \inf}} \ \frac{a_{n+1}}{a_n} \leq \underset{n \rightarrow \infty}{\mathrm{lim \inf}}\ a_n^{1/n} $$
I am totally stumped as $a_n$ can have arbitrary behavior. Any hints please?