$$\lim_{x\to 0}\frac{\sin^3x-x^3\operatorname{sgn}\left(1-\left[\frac{x}{\sin^{-1}x}\right]\right)}{x\tan^2 x\sin(\pi\cos x)}$$
(Note that here $\operatorname{sgn}$ denotes the Signum function and $[x]$ denotes the greatest integer less than or equal to $x$.)
The above simplifies to:
$$\lim_{x→0} \frac{\sin^{3}(x)-x^{3}}{x\tan^{2}(x)\sin(\pi(1-\cos x))}$$
then after further simplification i get:
$$=\lim_{x→0} \frac{6}{π}\frac{\sin(x)-x}{x^{3}}$$
$$=\lim_{x→0} \frac{6}{\pi}\frac{-1}{6}=\frac{-1}{π},$$
but in this method I have to calculate the limit of
$$\lim_{x→0} \frac{\sin(x)-x}{x^{3}}=\frac{-1}{6},$$
which is lengthy. Is there any other way to do this without calculating this limit.