Find the value of $$S=\cot(16)\cot(44)+\cot(44)\cot(76)-\cot(76)\cot(16)$$
Note:All angles are in degrees
My method:
I used the identity
$$\tan(x)\tan(60+x)\tan(60-x)=\tan(3x)$$
So choosing $x=16$ we get
$$\tan76 \tan44 \tan 16=\tan48$$
hence
$$S=\frac{\tan(76)+\tan(16)-\tan(44)}{\tan(48)}$$
$$S=\frac{\frac{\sin(76)}{\cos(76)}-\frac{\sin(44)}{\cos(44)}+\frac{\sin(16)}{\cos(16)}}{\tan(48)}$$
$$S=\frac{\frac{\sin(32)}{\cos(76)\cos(44)}+\frac{\sin(16)}{\cos(16)}}{\tan(48)}$$
$$S=\frac{\frac{2\sin(32)}{2\cos(76)\cos(44)}+\frac{\sin(16)}{\cos(16)}}{\tan(48)}$$
$$S=\frac{\frac{2\sin(32)}{\frac{-1}{2}+\cos(32)}+\frac{\sin(16)}{\cos(16)}}{\tan(48)}$$
can i need a clue from here?