0

How do I prove:

$$ \bigcap_{i \in \varnothing} A_i= \Omega $$

Also, another logical explanation will be great.

Ian
  • 101,645
Stav Alfi
  • 785

1 Answers1

1

It ensures that

$$\left ( \bigcap_{i \in I} A_i \right ) \cap \left ( \bigcap_{j \in J} A_j \right ) = \bigcap_{i \in I \cup J} A_i$$

for arbitrary families $A_i$ and index sets $I,J$.

It can also be regarded as a special case of the fact that "$\forall x \in \emptyset \: P(x)$" is true for any predicate $P$: for any $y$, "$\forall i \in \emptyset \: y \in A_i$" is true.

Ian
  • 101,645