$\textbf{Problem} $ Find rational numbers $a,b,c$ satisfying \begin{align*} (2^\frac13-1)^\frac13 = a^\frac13+b^\frac13+c^\frac13 \end{align*}
My Attempt: I try to $2^\frac13-1 = (a^\frac13+b^\frac13+c^\frac13)^3$ and compare with rational numbers and irrational numbers in LHS and RHS.
Any help is appreciated...
Thank you!
Update: I found the answer. I want to find rational numbers $a,b,c$ without assumption $a=1/9,b=-2/9,c=4/9$. Thus, I found the identity: $$\sqrt[3]{m^3-n^3+6m^2n+3mn^2-3(m^2+mn+n^2)\sqrt[3]{mn(m+n)}}=\\ \sqrt[3]{m^2(m+n)}-\sqrt[3]{mn^2}-\sqrt[3]{(m+n)^2n}$$
1) How to get the identity?
2) I want to know about uniqueness $(a,b,c)$ satisfying $(2^\frac13-1)^\frac13=a^\frac13+b^\frac13+c^\frac13$