At least, for large values of $n$, take the logarithms and expand as series to get
$$\log\left(2\frac{(2n+1)^{2n+1}}{(2n+2)^{2n+2}}\right)=-\log \left({n}\right)-1-\frac{3}{4 n}+\frac{7}{24
n^2}+O\left(\frac{1}{n^3}\right)$$
$$\log\left(\frac{n^n}{(n+1)^{n+1}}\right)=-\log \left({n}\right)-1-\frac{1}{2 n}+\frac{1}{6
n^2}+O\left(\frac{1}{n^3}\right)$$
$$\log\left(2\frac{(2n)^{2n}}{(2n+1)^{2n+1}}\right)=-\log \left({n}\right)-1-\frac{1}{4 n}+\frac{1}{24
n^2}+O\left(\frac{1}{n^3}\right)$$ Now, using $A=e^{\log(A)}$, we have, for large $n$,
$$2\frac{(2n+1)^{2n+1}}{(2n+2)^{2n+2}}=\frac 1e \left(\frac{1}{n}-\frac{3}{4 n^2}+\frac{55}{96
n^3}\right)+O\left(\frac{1}{n^4}\right)$$
$$\frac{n^n}{(n+1)^{n+1}}=\frac 1e \left(\frac{1}{n}-\frac{1}{2 n^2}+\frac{7}{24
n^3}\right)+O\left(\frac{1}{n^4}\right)$$
$$2\frac{(2n)^{2n}}{(2n+1)^{2n+1}}=\frac 1e \left(\frac{1}{n}-\frac{1}{4 n^2}+\frac{7}{96
n^3}\right)+O\left(\frac{1}{n^4}\right)$$ Now, you can conclude since
$$\frac{n^n}{(n+1)^{n+1}}-2\frac{(2n+1)^{2n+1}}{(2n+2)^{2n+2}}=\frac{1}{4 e n^2}-\frac{9}{32 e n^3}+O\left(\frac{1}{n^4}\right)$$
$$2\frac{(2n)^{2n}}{(2n+1)^{2n+1}}-\frac{n^n}{(n+1)^{n+1}}=\frac{1}{4 e n^2}-\frac{7}{32 e n^3}+O\left(\frac{1}{n^4}\right)$$