Let's group things a little.
$\sum_{n=0}^{\infty} \frac{3^{2n+1}(3n)!}{n!(2n+1)!4^{3n+1}}
=\dfrac34\sum_{n=0}^{\infty} \frac{3^{2n}(3n)!}{n!(2n+1)!4^{3n}}
=\dfrac34\sum_{n=0}^{\infty} (3^2/4^3)^n\frac{(3n)!}{n!(2n+1)!}
$
so let
$f(x)
=\sum_{n=0}^{\infty} x^n\frac{(3n)!}{n!(2n+1)!}
$.
This looks sort of
like a trisection of series,
but,
being lazy,
I threw it at Wolfy and,
to my great surprise,
got
$f(x)
=\dfrac{2 \sin(\frac13 \sin^{-1}((3 \sqrt{3x}/2)))}{\sqrt{3x}}
$
which converges when
$|x| < 4/27$.
Putting $x=9/64$,
$\begin{array}\\
f(9/64)
&=\dfrac{2 \sin(\frac13 \sin^{-1}((3 \sqrt{3(9/64)}/2)))}{\sqrt{3(9/64)}}\\
&=\dfrac{2 \sin(\frac13 \sin^{-1}((3 \cdot 3\sqrt{3}/8/2)))}{3\sqrt{3}/8}\\
&=\dfrac{16 \sin(\frac13 \sin^{-1}(9\sqrt{3}/16))}{3\sqrt{3}}\\
&=\dfrac{16 (\sqrt{3}/4)}{3\sqrt{3}}
\qquad\text{again, according to Wolfy}\\
&=\dfrac43\\
\end{array}
$
Muptiplying by $\dfrac34$,
the result is $1$.
As to how I could
prove it by my self,
I don't know.