Prove: $$\sin\frac{\pi}{20}+\cos\frac{\pi}{20}+\sin\frac{3\pi}{20}-\cos\frac{3\pi}{20}=\frac{\sqrt2}{2}$$
ok, what I saw instantly is that:
$$\sin\frac{\pi}{20}+\sin\frac{3\pi}{20}=2\sin\frac{2\pi}{20}\cos\frac{\pi}{20}$$
and that,
$$\cos\frac{\pi}{20}-\cos\frac{3\pi}{20}=-2\sin\frac{2\pi}{20}\sin\frac{\pi}{20}$$
So, $$2\sin\frac{2\pi}{20}(\cos\frac{\pi}{20}-\sin\frac{\pi}{20})=\frac{\sqrt2}{2}=\sin\frac{5\pi}{20}$$
Unfortunately, I can't find a way to continue this, any ideas or different ways of proof?
*Taken out of the TAU entry exams (no solutions are offered)

