1

If $\left \langle (4, 10) \right \rangle$ is the cyclic subgroup of the abelian group of $\mathbb{Z}\times \mathbb{Z}_{12}$, what is the order of the quotient group $(\mathbb{Z}\times \mathbb{Z}_{12})/\left \langle (4, 10) \right \rangle$?

Any help please. Thank you.

purecj
  • 344

1 Answers1

1

We have $$ (\mathbb{Z}\times \mathbb{Z}_{12})/ \langle (4, 10) \rangle \cong (\mathbb{Z}\times \mathbb{Z})/ \langle (4, 10), (0,12) \rangle $$ Therefore, the group has $48$ elements, because $$ \begin{vmatrix} 4 & 10 \\ 0 & 12 \end{vmatrix} = 48 $$ If you want to determine which group it is, compute the Smith normal form of this matrix.

lhf
  • 216,483