I need for you fine scholars to double-check my proof and offer your critiques.
Let $(X, \mu)$ be a finite measure space. For any finite number of measurable sets $E_1, E_2, ..., E_n \subseteq X$.
$$\mu\left(\bigcup_{k = 1}^{n} E_k \right) = \sum_{\emptyset \neq S\subseteq\{1, ..., n\}}^{n} (-1)^{|S|-1} \mu\left(\bigcap_{k\in S} E_k\right) $$
Attempted Proof
Choose a point $x \in \bigcup_{k = 1}^n E_k$ and let $E_{\ell_1}, E_{\ell_2}, ..., E_{\ell_t}$ be the subsets such that $x\in E_{\ell_j}, \forall 1 \leq j \leq t$.
$\langle\text{# of times x is counted on the LHS}\rangle$ = 1
$\langle\text{# of times x is counted on the RHS}\rangle$ = $\sum_{k=1}^n (-1)^{k+1} |\{\bigcap_{p=1}^k E_{\ell_p} : 1 \leq \ell_1 < \ell_2 < ... < \ell_k \leq t\}|$
However, $|\{\bigcap_{p=1}^k E_{\ell_p} : 1 \leq \ell_1 < \ell_2 < ... < \ell_k \leq t\}| = \binom{t}{k}$, therefore
$\langle\text{# of times x is counted on the RHS}\rangle$ = $\sum_{k=1}^n (-1)^{k+1} \binom{t}{k}$
Using the binomial theorem, it can be deduced that $\sum_{k=1}^n (-1)^{k+1} \binom{t}{k} = 1$. Therefore
$\langle\text{# of times x is counted on the LHS}\rangle$ = $\langle\text{# of times x is counted on the RHS}\rangle$ .