I have to prove this inequality, where $Q_k$ is the $k$-th Fibonacci number and $R_k$ is the $k$-th convergent of $[1;1,1,...]$:
$$R_1=1$$ $$R_2=1+\frac{1}{1}$$ $$R_3=1+\frac{1}{1+\frac{1}{1}}$$
and so on.
So, from the following properties of the sequence $\{R_k\}$:
$$R_k=\frac{Q_{k+1}}{Q_k}$$ $$R_{k+1}-R_k=\frac{(-1)^k}{Q_{k+1}Q_k}$$ $$Q_{k+2}=Q_{k+1}+Q_k$$
I found that the Fibonacci sequence can be written taking into account only one previous term:
$$Q_{k+1}=\frac{Q_{k}}{2}\left(1+\sqrt{5-\frac{4(-1)^k}{Q_{k}^2}}\right)$$
and so in this way I can obtain the exact expression for the error between $R_k$ and its limit value:
$$E_k=\left | \frac{1+\sqrt{5}}{2}-\frac{Q_{k+1}}{Q_k} \right | =\frac{(-1)^{k+1}}{2}\left( \sqrt{5}-\sqrt{5+\frac{4(-1)^k}{Q_k^2}} \right).$$
Now, if I try to prove that this last expression verify the claim in the case of $k$ even, I obtain:
$$-\frac{1}{2}\left( \sqrt{5}-\sqrt{5+\frac{4}{Q_k^2}}\right) >\frac{1}{Q_k^2\sqrt{5}} \Rightarrow 0>\frac{4}{Q_k^4}$$
that is an absurd.
Where am I doing wrong?