Compute the minimal polynomials over the field $\mathbb{Q}$ of the given numbers
- $\sqrt{2+i\sqrt{2}}$
- $\sqrt{1+ \sqrt{3}}$
- $5^\frac{1}{4}$
Compute the minimal polynomials over the field $\mathbb{Q}$ of the given numbers
Partial answer:
Let $\alpha =\sqrt{2+i\sqrt{2}}$. It holds that $$\begin{align} \alpha =\sqrt{2+i\sqrt{2}} &\Longrightarrow \alpha ^2 = 2 +i\sqrt{2}\\ &\Longrightarrow \alpha^2-2=i\sqrt{2}\\ &\Longrightarrow \alpha ^4 -4\alpha ^2 + 4=-2\\ &\Longrightarrow \alpha ^4 -4\alpha ^2 +6=0 \end{align}$$
It follows that $\alpha$ is a root of the polynomial $m_\alpha(t)$ whee $\displaystyle m_\alpha(t):=t^4-4t^2+6\in \mathbb{Q} \textbf{[}t\textbf{]}$.
Could it be that $m_\alpha$ is irreducible over $\mathbb{Q}$? Ask Eisenstein.
The others are similar.