A faster way to find the second equation would be to simply make the substitution $u = nx$ which leads to :
$$ \int_0^\infty e^{-u} \left( \frac{u}{n}\right)^{s-1} \frac{du}{n} = \frac{\Pi(s-1)}{n^s} \quad \quad (*)$$
You can also write :
$$ \int_0^\infty \frac{x^{s-1}}{e^x - 1}dx = \int_0^\infty e^{-x} x^{s-1}\frac{1}{1 - e^{-x}}dx$$
And, you can write (geometric series) :
$$ \forall x >0, \ \frac{1}{1 - e^{-x}} = \sum_{n=0}^\infty e^{-nx}$$
which leads to
$$ \int_0^\infty \frac{x^{s-1}}{e^x - 1}dx = \int_0^\infty e^{-x} x^{s-1}\sum_{n=0}^\infty e^{-nx} dx $$
We can easily switch sum and integral, indeed :
$$ \forall n \in \mathbb N,\ \sum_{k=0}^n e^{-(n+1)x} x^{s-1} \leqslant e^{-x} x^{s-1} = \varphi(x) $$
so we can apply the dominated convergence theorem with $\varphi \in L^1(\mathbb R_+^*)$. Using $(*)$ :
$$ \int_0^\infty \frac{x^{s-1}}{e^x - 1}dx = \sum_{n=0}^\infty \frac{\Pi(s-1)}{(n+1)^s} $$
Which is exactly :
$$ \int_0^\infty \frac{x^{s-1}}{e^x - 1}dx = \Pi(s-1)\zeta(s) $$