Recall that $$\lim_{x \to \infty} \left( 1 + \frac{k}{x}\right)^x = e^k.$$
We can add $o(x^{-1})$ terms to the parentheses without changing this. If we want to evaluate, for example, $$\lim_{x \to \infty} \left( 1 + \frac{k}{x} + \frac{k_2}{x^{1 + \eta}}\right)$$ where $\eta > 0$, then note that for any $\epsilon$, we can choose some large $X$ such that $x > X$ implies $$\left|\frac{k_2}{x^\eta}\right| < \epsilon$$ and thus $$e^{k-\epsilon} = \lim_{x \to \infty} \left( 1 + \frac{k-\epsilon}{x}\right) \leq \lim_{x \to \infty} \left( 1 + \frac{k}{x} + \frac{k_2}{x^{1 + \eta}}\right) \leq \lim_{x \to \infty} \left( 1 + \frac{k+\epsilon}{x}\right) = e^{k+\epsilon}.$$ But since $\epsilon$ was arbitrary, this shows $$\lim_{x \to \infty} \left( 1 + \frac{k}{x} + \frac{k_2}{x^{1 + \eta}} \right) = e^k.$$
Now by Taylor expansions, for $x > 0$, $$\frac{x^3}{2} - \frac{x^5}{8} < \arcsin x - \arctan x < \frac{x^3}{2} - \frac{x^5}{8} + \frac{3x^7}{16} $$ so $$\lim_{x \to 0^+} \left(1 - \frac{x^2}{4} \right)^\frac{2}{x^2} \leq \lim_{x \to 0^+} \left[ \frac{2}{x^3} \left( \arcsin x - \arctan x\right) \right]^\frac{2}{x^2} \leq \lim_{x \to 0^+} \left(1 - \frac{x^2}{4} + \frac{3x^4}{16} \right)^\frac{2}{x^2}.$$ By substituting $y = 2/x^2$, the outer limits are made into $$\lim_{y \to \infty} \left( 1 - \frac{1}{2y} \right)^y$$ and $$\lim_{y \to \infty} \left( 1 - \frac{1}{2y} + \frac{3}{4y^2} \right)^y$$ both of which equal $\boxed{e^{-1/2}}$.
The $x \to 0^-$ limit can be treated very similarly, the only caveat being that the inequalities are reversed.