Feynman's trick does the job. We have
$$\begin{eqnarray*} \int_{0}^{1}\psi(s+x)\,dx &=& \log(s),\\
\int_{0}^{1}x\,\psi(s+x)\,dx &=& \log\Gamma(s+1)+\psi^{(-2)}(s)-\psi^{(-2)}(s+1),\\\int_{0}^{1}x^2\,\psi(s+x)\,dx &=&\log\Gamma(s+1)-2\psi^{(-3)}(s)+2\psi^{(-3)}(s+1)-2\psi^{(-2)}(s+1),\\
\int_{0}^{1}x^3\,\psi(s+x)\,dx &=&\log\Gamma(s+1)+6\psi^{(-4)}(s)-6\psi^{(-4)}(s+1)+6\psi^{(-3)}(s+1)-3\psi^{(-2)}(s+1)
\end{eqnarray*}$$
etcetera, where $\int_{0}^{1}\log\Gamma(s+1)\,ds =-1+\frac{1}{2}\log(2\pi)$ follows from the reflection formula and
$$ \int_{0}^{1}\psi^{(-2)}(s)\,ds = \log A+\tfrac{1}{4}\log(2\pi), $$
$$ \int_{0}^{1}\psi^{(-2)}(s+1)\,ds = \log A-\tfrac{3}{4}+\tfrac{3}{4}\log(2\pi), $$
$$ \int_{0}^{1}\psi^{(-3)}(s)\,ds = \tfrac{1}{2}\log A+\tfrac{1}{48}\log(2\pi)+\tfrac{1}{12}\cdot\frac{\zeta(3)}{\zeta(2)}, $$
$$ \int_{0}^{1}\psi^{(-3)}(s+1)\,ds = \tfrac{3}{2}\log A-\tfrac{11}{36}+\tfrac{7}{12}\log(2\pi)+\tfrac{1}{48}\cdot\frac{\zeta(3)}{\zeta(2)} $$
etcetera, where $A$ is the Glaisher-Kinkelin constant. Summarizing the given integrals can be expressed in terms of $\zeta$ and $\zeta'$ evaluated at $\mathbb{N}\setminus\{1\}$, i.e. in terms of the integrals $\int_{0}^{+\infty}\frac{x^s}{e^x-1}\,dx$ and $\int_{0}^{+\infty}\frac{x^s\log(x)}{e^x-1}\,dx$. This is also a consequence of Binet's first $\log\Gamma$ formula and Fubini's theorem.
Yet another way is to express $x^n$ in terms of Bernoulli polynomials, then exploit the Malmsten-Kummer Fourier series of $\log\Gamma$. This is probably the most efficient way.
No battle is lost with enough weapons in the arsenal :D