Assume $f(x)$ is continuous on $[0,1]$ , and $f(1)=0$. Prove $$\lim_{n\to \infty} n\int_0^1x^nf(x)\,\text dx=0 $$
I already know that $\lim_{n\to \infty}\int_0^1x^nf(x) \, \text dx=0$. Is this helpful in the question above?
Assume $f(x)$ is continuous on $[0,1]$ , and $f(1)=0$. Prove $$\lim_{n\to \infty} n\int_0^1x^nf(x)\,\text dx=0 $$
I already know that $\lim_{n\to \infty}\int_0^1x^nf(x) \, \text dx=0$. Is this helpful in the question above?
Fix some $\epsilon>0$. Then there is a $\delta>0$ (smaller one) so that on the interval $[1-\delta,1]$ we have $|f|<\epsilon$. Now we can easily estimate: $$ \begin{aligned} 0 &\le \left|n\int_0^1 x^n\; f(x)\; dx\right| \\ &\le \int_0^1 (n+1)x^n\; |f(x)|\; dx \\ &= \int_0^{1-\delta}(n+1)x^n\; |f(x)|\; dx + \int_{1-\delta}^1(n+1)x^n\; |f(x)|\; dx \\ &\le \int_0^{1-\delta}(n+1)x^n\; \|f\|\; dx + \int_{1-\delta}^1(n+1)x^n\; \epsilon\; dx \\ & \le (1-\delta)^{n+1} \|f\| + \epsilon \ . \end{aligned} $$ We pass to the limit (superior) w.r.t. $n$ now in the obtained inequality, getting $$ \limsup_n\left|n\int_0^1 x^n\; f(x)\; dx\right|\le \epsilon\ . $$ Now we let $\epsilon$ go to zero. So the limit exists, and is zero.