Let $G$ be a group with $G \trianglerighteq N$ normal subgroup. Assume that $N$ is finitely generated, and $G /N$ (the quotient group) is finitely generated as well. Is $G$ finitely generated?
I think that the answer is no, and I wanted to use the following example: $G = \mathbb{Q}$, $N=\mathbb{Z}$. My only remaining question is, how to show that $\mathbb{Q} /\mathbb{Z}$ is finitely generated?(if at all).
And if it isn't, any other ideas?