Evaluate : $$\begin{align} & \int_{0}^{\frac{\pi }{2}}{\frac{{{\ln }^{2}}\left( 2\cos x \right)}{{{\ln }^{2}}\left( 2\cos x \right)+{{x}^{2}}}}\text{d}x \\ & \int_{0}^{1}{\frac{\arctan \left( {{x}^{3+\sqrt{8}}} \right)}{1+{{x}^{2}}}}\text{d}x \\ \end{align}$$
-
For the second one, $x = \tan\theta$. – hjpotter92 Jan 29 '13 at 01:33
-
30.683037, 0.0763652 – Tunococ Jan 29 '13 at 01:34
-
2For the first integral, refer to my blog posting. – Sangchul Lee Jan 29 '13 at 03:02
-
@sos440 : Thx sos440 :) – gauss115 Jan 29 '13 at 03:11
-
The first integral (subtracted from $\pi/2$) appeared before in this question. – David Moews Jan 30 '13 at 02:07
-
quick question: is $ln^2(f) = ln(ln(f))$ or $ln(f)^2$? – Sidharth Ghoshal Dec 22 '13 at 02:45
1 Answers
For the second integral, consider the more general form
$$\int_0^1 dx \: \frac{\arctan{x^{\alpha}}}{1+x^2}$$
(I do not understand what is special about $3+\sqrt{8}$.)
Taylor expand the denominator and get
$$\begin{align} &=\int_0^1 dx \: \arctan{x^{\alpha}} \sum_{k=0}^{\infty} (-1)^k x^{2 k} \\ &= \sum_{k=0}^{\infty} (-1)^k \int_0^1 dx \: x^{2 k} \arctan{x^{\alpha}} \end{align}$$
Now we can simply evaluate these integrals in terms of polygamma functions:
$$\int_0^1 dx \: x^{2 k} \arctan{x^{\alpha}} = \frac{\psi\left(\frac{a+2 k+1}{4 a}\right)-\psi\left(\frac{3 a+2 k+1}{4 a}\right)+\pi }{8 k+4}$$
where
$$\psi(z) = \frac{d}{dz} \log{\Gamma{(z)}}$$
and we get that
$$\int_0^1 dx \: \frac{ \arctan{x^{\alpha}}}{1+x^2} = \frac{\pi^2}{16} - \frac{1}{4} \sum_{k=0}^{\infty} (-1)^k \frac{\psi\left(\frac{3 \alpha+2 k+1}{4 \alpha}\right)-\psi\left(\frac{\alpha+2 k+1}{4 \alpha}\right) }{2 k+1} $$
This is about as close as I can get. The sum agrees with the numerical integration out to 6 sig figs at about $10,000$ terms for $\alpha = 3+\sqrt{8}$.
- 138,521
-
Thx rlgordonma, I got about the same form of answer with another log integral..which I cant simplify too :) – gauss115 Jan 29 '13 at 07:18
-
1See here, the answer is $$\int_0^{1}\frac{\arctan x^{3+\sqrt{8}}}{1+x^2} = \frac{\ln 2 \ln(3+\sqrt{8})}{16}$$ – Huanyu Shi Apr 26 '22 at 08:22