METHODOLOGY $1$:
Let $\phi\in C^\infty_C$ be a test function and let $\epsilon>0$. Then, we have
$$\begin{align}
\int_{-\infty}^\infty \frac{e^{itx}}{x-i\epsilon}\,\phi(x)\,dx&=\int_{-\infty}^\infty \frac{x}{x^2+\epsilon^2}\,e^{itx}\phi(x)\,dx+i\int_{-\infty}^\infty \frac{\epsilon}{x^2+\epsilon^2}\,e^{itx}\phi(x)\,dx\\\\
&=\int_{-\infty}^\infty \frac{e^{itx}}{x}\phi(x)\,dx-(\epsilon-i)\int_{-\infty}^\infty \frac{\epsilon}{x^2+\epsilon^2}e^{itx}\phi(x)\,dx\\\\
&=\text{sgn}(t)\int_{-\infty}^\infty \frac{e^{ix}}{x}\phi(x/t)\,dx-(\epsilon-i)\int_{-\infty}^\infty \frac{\epsilon}{x^2+\epsilon^2}\,e^{itx}\phi(x)\,dx\tag1
\end{align}$$
For the second integral on the right-hand side of $(1)$, the Dominated Convergence Theorem guarantees that
$$\begin{align}
\lim_{\epsilon\to 0}\int_{-\infty}^\infty \frac{\epsilon}{x^2+\epsilon^2}\,e^{itx}\phi(x)\,dx&=\lim_{\epsilon\to 0}\int_{-\pi/2}^{\pi/2} e^{it\epsilon \tan(x)}\phi(\epsilon \tan(x))\,dx\\\\
&=\int_{-\pi/2}^{\pi/2}\lim_{\epsilon\to 0}\left( e^{it\epsilon \tan(x)}\phi(\epsilon \tan(x))\right)\,dx\\\\
&=\pi\phi(0)
\end{align}$$
For the first integral on the right-hand side of $(1)$, we have
$$\begin{align}
\lim_{t\to\pm \infty}\int_{-\infty}^\infty \frac{e^{ix}}{x}\phi(x/t)\,dx&=i\pi \phi(0)\end{align}$$
where we used the result in THIS ANSWER.
Putting it together, we have
$$\lim_{t\to \pm \infty}\lim_{\epsilon\to 0^+}\int_{-\infty}^\infty \frac{e^{itx}}{x-i\epsilon}\,\phi(x)\,dx=i \pi\phi(0)(1\pm 1)$$
whence we can write in distribution that
$$\lim_{t\to\pm\infty}\lim_{\epsilon\to 0^+}\frac{e^{itx}}{x-i\epsilon}\sim i\pi(1\pm 1)\delta(x)$$
METHODOLOGY $2$:
Note that for any $\epsilon>0$ and $t>0$
$$\begin{align}
\int_{-\infty}^\infty \left(\frac{e^{itx}}{x-i\epsilon}\right)\,dx&=e^{-t\epsilon}\int_{-\infty-i\epsilon}^{\infty-i\epsilon}\frac{e^{itx}}{x}\,dx\\\\
&=i2\pi e^{-t\epsilon}\tag1
\end{align}$$
For any test function $\phi\in C_C^\infty$ and any given number $\nu>0$ we write
$$\begin{align}
\int_{-\infty}^\infty \left(\frac{e^{itx}}{x-i\epsilon}\right)\phi(x)\,dx&=i2\pi e^{-t\epsilon}+\int_{-\infty}^\infty \left(\frac{e^{itx}}{x-i\epsilon}\right)(\phi(x)-\phi(0))\,dx\\\\
&=i2\pi e^{-t\epsilon}+\int_{|x|\le \nu} \left(\frac{e^{itx}}{x-i\epsilon}\right)(\phi(x)-\phi(0)) \,dx\\\\
&+\int_{|x|\ge\nu} \left(\frac{e^{itx}}{x-i\epsilon}\right)(\phi(x)-\phi(0)) \,dx\tag2
\end{align}$$
For the first integral on the right-hand side of $(2)$, application of $(1)$ along with the mean value theorem yields
$$\int_{|x|\le \nu} \left(\frac{e^{itx}}{x-i\epsilon}\right)(\phi(x)-\phi(0)) \,dx = \int_{|x|\le \nu} \left(\frac{e^{itx}x}{x-i\epsilon}\right)\phi'(\xi(x))\,dx\tag3$$
for $0<\xi(x)<x$.
For the integral on the right-hand side of $(3)$, we have the estimate
$$\left|\int_{|x|\le \nu} \left(\frac{e^{itx}x}{x-i\epsilon}\right)\phi'(\xi(x))\,dx\right| \le 2||\phi'||_{\infty}\left(\sqrt{\nu^2+\epsilon^2}-\epsilon\right)\tag4$$
so that $\lim_{\epsilon\to 0}\left|\int_{|x|\le \nu} \left(\frac{e^{itx}x}{x-i\epsilon}\right)\phi'(\xi(x))\,dx\right| \le 2||\phi'||_{\infty}\nu$.
For the second integral on the right-hand side of $(2)$, integration by parts followed by application of the Riemann-Lebesgue Lemma yields
$$\begin{align}
\lim_{t\to\infty}\lim_{\epsilon\to 0}\int_{|x|\ge\nu} \left(\frac{e^{itx}}{x-i\epsilon}\right)(\phi(x)-\phi(0)) \,dx&=\lim_{t\to\infty}\int_{|x|\ge\nu} \left(\frac{e^{itx}}{x}\right)(\phi(x)-\phi(0)) \,dx\\\\
&=0\tag5
\end{align}$$
Putting it all together, reveals that for any given $\nu>0$
$$\lim_{t\to\infty}\lim_{\epsilon\to0}\left|\int_{-\infty}^\infty \left(\frac{e^{itx}}{x-i\epsilon}\right)\phi(x)\,dx-i2\pi \phi(0)\right|\le 2||\phi'||_{\infty}\nu$$
whence we have established that in distribution
$$\lim_{t\to\infty}\lim_{\epsilon\to 0^+}\frac{e^{itx}}{x-i\epsilon}\sim2\pi i \delta(x)$$