- The problem statement, all variables and given/known data
Find the geodesics on a sphere $g(x,y,z)=x^{2}+y^{2}+z^{2}−1=0$ arc-length element $ds=\sqrt{dx^{2}+dy^{2}+dz^{2}}$
- Relevant equations
$f(x,y,z)=\sqrt{x′^{2}+y′^{2}+z′^{2}} $where $x′^{2}$ means $dx^{2}/ds^{2}$ and not $d^{2}x/ds^{2}$
- The attempt at a solution
Using the fact that $x^{2}+y^{2}+z^{2}=1$ I get three equations if of the form $d^{2}x/ds^{2}=2λx$ i.e. the double derivative of $x$ w.r.t. $s$ $d^{2}y/ds^{2}=2λy$ $d^{2}z/ds^{2}=2λz$
My lecturer now says, that we have to differentiate the constraint $g$ twice w.r.t. $s$ to get $(dx/ds)^{2}+(dy/ds)^{2}+(dz/ds)^{2}=−2λ(x2+y2+z2)$ since the LHS = 1 and the brackets in the RHS = 1 , the lecturer concludes, that $\lambda =−0.5$. Now I am most confused here, as I do not see where and why the double differentiation happened. Nor do I see how this helps to determine that $xA+By+z=0$ (A,B = const.) which defines the great circle.
I was trying to compare this to Geodesics of a Sphere in Cartesian Coordinates but am too daft to see a pattern...
Any help appreciated.