Find $m + n$ if $m$ and $n$ are natural numbers such that:$$\frac {m+n} {m^2+mn+n^2} = \frac {4} {49}\;.$$
My reasoning:
Say: $$\begin{cases}m+n = 4k\\ m^2+mn+n^2 = 49k\end{cases}$$
It follows: \begin{align*} (m+n)^2 = (4k)^2 & = 16k^2\\ m^2+mn+n^2 + mn & = 16k^2\\ mn & = 16k^2 - 49k \end{align*}
So \begin{align*} mn & \gt 0\\ 16k^2 - 49k & \gt 0\\ k & \gt 3 \end{align*}
Then no more progress.