Starting from
$$\sum_{k=0}^{b-1} {a+k-1\choose a-1} p^a (1-p)^k
= \sum_{k=a}^{a+b-1} {a+b-1\choose k} p^k (1-p)^{a+b-k-1}$$
we simplify to
$$\sum_{k=0}^{b-1} {a+k-1\choose a-1} p^a (1-p)^k
= \sum_{k=0}^{b-1} {a+b-1\choose a+k} p^{a+k} (1-p)^{b-k-1}$$
or
$$\sum_{k=0}^{b-1} {a+k-1\choose a-1} (1-p)^k
= \sum_{k=0}^{b-1} {a+b-1\choose a+k} p^k (1-p)^{b-k-1}.$$
We get for the LHS
$$\sum_{k\ge 0} {a+k-1\choose a-1} (1-p)^k
[[0\le k\le b-1]]
\\ = \sum_{k\ge 0} {a+k-1\choose a-1} (1-p)^k
[z^{b-1}] \frac{z^k}{1-z}
\\ = [z^{b-1}] \frac{1}{1-z}
\sum_{k\ge 0} {a+k-1\choose a-1} (1-p)^k z^k
\\ = [z^{b-1}] \frac{1}{1-z} \frac{1}{(1-(1-p)z)^a}.$$
The RHS is
$$\sum_{k=0}^{b-1} p^k (1-p)^{b-k-1}
[z^{b-1-k}] \frac{1}{(1-z)^{a+k+1}}
\\ = [z^{b-1}] \frac{1}{(1-z)^{a+1}}
\sum_{k=0}^{b-1} p^k (1-p)^{b-k-1}
\frac{z^k}{(1-z)^{k}}.$$
There is no contribution to the coefficient extractor in front when
$k\gt b-1$ and we may extend $k$ to infinity, getting
$$(1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^{a+1}}
\sum_{k\ge 0} p^k (1-p)^{-k}
\frac{z^k}{(1-z)^{k}}
\\ = (1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^{a+1}}
\frac{1}{1-pz/(1-p)/(1-z)}
\\ = (1-p)^{b-1} [z^{b-1}] \frac{1}{(1-z)^a}
\frac{1}{1-z-pz/(1-p)}
\\ = [z^{b-1}] \frac{1}{(1-(1-p)z)^a}
\frac{1}{1-(1-p)z-pz}
\\ = [z^{b-1}] \frac{1}{1-z} \frac{1}{(1-(1-p)z)^a}.$$
The LHS and the RHS are seen to be the same and we may conclude.
Remark. The first one is the easy one and follows by
inspection. The Iverson bracket may be of interest here as an example
of the method.