It can be found that
$$\sum_{n=1}^k \sin n = \frac{\sin\left(\frac{k+1}{2}\right)\sin\left(\frac{k}{2} \right)}{\sin\left(\frac{1}{2}\right)},$$
$$ \sum_{n=1}^k \cos n = \frac{\cos\left(\frac{k+1}{2}\right)\sin\left(\frac{k}{2} \right)}{\sin\left(\frac{1}{2}\right)},$$
and through some manipulation of the trigonometric identities, it can be shown that
$$ -0.1277\approx\frac{\cos\left(\frac{1}{2}\right)-1}{2\sin\left(\frac{1}{2} \right)} \leq \sum_{n=1}^k \sin n \leq \frac{1+\cos\left(\frac{1}{2} \right)}{2\sin\left(\frac{1}{2}\right)} \approx 1.9582,$$
$$ -1.5430\approx\frac{-\sin\left(\frac{1}{2}\right)-1}{2\sin\left(\frac{1}{2}\right)} \leq \sum_{n=1}^k \cos n \leq \frac{1-\sin\left(\frac{1}{2} \right)}{2\sin\left(\frac{1}{2}\right)}\approx0.5430,$$
$$ -1.0597\approx\frac{\cos\left(\frac{1}{2}\right)-\sin\left(\frac{1}{2}\right)-\sqrt{2}}{2\sin\left(\frac{1}{2}\right)} \leq \sum_{n=1}^k(\cos n+\sin n) \leq \frac{\cos\left(\frac{1}{2}\right)-\sin\left(\frac{1}{2}\right)+\sqrt{2}}{2\sin\left(\frac{1}{2}\right)}\approx1.8902,$$
$$ -0.0597\approx\frac{\cos\left(\frac{1}{2}\right)+\sin\left(\frac{1}{2}\right)-\sqrt{2}}{2\sin\left(\frac{1}{2}\right)} \leq \sum_{n=1}^k(\sin n-\cos n) \leq \frac{\cos\left(\frac{1}{2}\right)+\sin\left(\frac{1}{2}\right)+\sqrt{2}}{2\sin\left(\frac{1}{2}\right)}\approx2.8902.$$
Can people please tell me where I can find and confirm these results? I check the inequalities on Desmos, and the actual maximum and minimum values are pretty close to the ideal maximum and minimum values.