Let $X$, $Y$, and $Z$ be three independent uniform random variables on $[0, 1]$. Compute the probability $P(XY < Z^2)$.
Here is what I've done:
\begin{align}
P(XY<Z^2) &= \int_{-\infty}^{\infty} P(XY<Z^2|Z=z)f_z(z)dz \\
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} P(XY<z^2|Y=y)f_y(y)f_z(z)dzdy \\
&=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} P(X<\frac{z^2}{y})f_y(y)f_z(z)dzdy\\
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F_X(\frac{z^2}{y})dzdy
\end{align}
since $f_y(y)=f_z(z)=1$ and $F_X(x)=x$, we get
$$\int_{0}^{1}\int_{0}^{1}\frac{z^2}{y}dzdy$$
There must be something wrong...
Can anyone help me with this?