I am trying to find the Laurent series for $f(z)=\frac{1}{z-2i}-\frac{1}{z+i}$ with centre $1$ that converges at $3$.
I was thinking that if we want the series to converge at $3$, we are interested in the region $\sqrt{2}<|z-1|<\sqrt{5}$. Hence, \begin{align} f(z)&=-\frac{1}{2i-1-(z-1)}+\frac{1}{-i-1-(z-1)} \\ &=-\frac{1}{2i-1}\left(\frac{1}{1-\frac{z-1}{2i-1}}\right)-\frac{1}{z-1}\left(\frac{1}{1-\frac{-1-i}{z-1}}\right) \\ &=-\frac{1}{2i-1}\sum_{n=0}^{\infty}\left(\frac{z-1}{2i-1}\right)^n-\frac{1}{z-1}\sum_{n=0}^{\infty}\left(\frac{-1-i}{z-1}\right)^n \\ &=-\sum_{n=0}^{\infty}\left(\frac{(z-1)^n}{(2i-1)^{n+1}}+\frac{(-1-i)^n}{(z-1)^{n+1}}\right) \end{align} Is this solution correct? This question is different to others I have done in the past.