Let $A, B$ be finite subsets of a group $G$ (not necessarily finite). Is it true that $|AB| = |BA|$? More generally, is it true that $|ABC| = |ABC| =\cdots$ any permutation of three elements, if $C$ is another finite subset of $G$?
For the first question, I know this to be true by the product formula when $A$ and $B$ are groups (so we not only have equality but a formula even), but I was wondering if this was true in general.