Consider two binary semi-infinite matrices with obvious patterns: $$ C= \begin{bmatrix} 1 &0 &0 &0 &0 &0 &0 &\cdots\\ 1 &0 &0 &0 &0 &0 &0 &\cdots\\ 0 &1 &0 &0 &0 &0 &0 &\cdots\\ 0 &1 &0 &0 &0 &0 &0 &\cdots\\ 0 &0 &1 &0 &0 &0 &0 &\cdots\\ 0 &0 &1 &0 &0 &0 &0 &\cdots\\ 0 &0 &0 &1 &0 &0 &0 &\cdots\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \end{bmatrix} $$ and
$$ T= \begin{bmatrix} 1 &1 &0 &0 &0 &0 &0 &\cdots\\ 0 &1 &1 &0 &0 &0 &0 &\cdots\\ 0 &0 &1 &1 &0 &0 &0 &\cdots\\ 0 &0 &0 &1 &1 &0 &0 &\cdots\\ 0 &0 &0 &0 &1 &1 &0 &\cdots\\ 0 &0 &0 &0 &0 &1 &1 &\cdots\\ 0 &0 &0 &0 &0 &0 &1 &\cdots\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \end{bmatrix} $$
Let $A_n=T^n C$, then the non-zero entries of $A_n$ are the ${n+1}\choose{m}$, $0\le m \le n+1$ binomial coefficients. For example,
$$ A_3= \begin{bmatrix} 4 &4 &0 &0 &0 &0 &\cdots\\ 1 &6 &1 &0 &0 &0 &\cdots\\ 0 &4 &4 &0 &0 &0 &\cdots\\ 0 &1 &6 &1 &0 &0 &\cdots\\ 0 &0 &4 &4 &0 &0 &\cdots\\ 0 &0 &1 &6 &1 &0 &\cdots\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \end{bmatrix} $$
Is there a simple formula for the determinants of the $k\times k$ upper left blocks of the matrices $A_n$? That is: what is $\det(B_n^k)$, where $$B_n^k(ij)=A_n(ij),$$ $1\le i,j \le k\le n+1$?
NOTES:
The computer factorisation of $\det(B_n^k)$ shows that $\det(B_n^{(n+1)}=2^{n(n+1)/2}$ and the determinants factorisations have only factors less than $2(n+1)$, which suggests that the determinants are products of binomial coefficients of the form ${l}\choose{k}$, $0\le k,l\le 2(n+1)$.
This question is motivated by the continued fraction approximation of the square root function, the matrices $A_n$ being the Hurwitz matrices of the continued fractions.