For $n = 1$,
$$\begin{align*}
f(x) &= x^x\\
& = e^{x\ln x}\\
f'(x) &= \frac{d}{dx} e^{x\ln x}\\
&= e^{x\ln x} \left(\ln x + 1\right)\\
&= x^x\left(\ln x + 1\right)\\
\end{align*}$$
Let $g(x) = \ln x + 1$. Then for $k \ge 1$,
$$g^{(k)}(x) = (-1)^{k-1}(k-1)!\ x^{-k}$$
From the second derivative onwards, i.e. $n \ge 1$, using the general Leibniz rule,
$$\begin{align*}
f^{(n+1)}(x) &= \frac{d^n}{dx^n}f'(x)\\
&= \frac{d^n}{dx^n}\left[f(x)\ g(x)\right]\\
&=\sum_{k=0}^{n}\binom{n}{k}\ f^{(n-k)}(x)\ g^{(n)}(x)\\
&= f^{(n)}(x)\ g^{(0)}(x) + \sum_{k=1}^{n}\binom{n}{k}\ f^{(n-k)}(x)\ g^{(n)}(x)\\
&= f^{(n)}(x) \left(\ln x + 1\right) + \sum_{k=1}^{n}\binom{n}{k}\ f^{(n-k)}(x)\left[(-1)^{k-1}(k-1)!\ x^{-k}\right]\\
&= f^{(n)}(x) \left(\ln x + 1\right) + \sum_{k=1}^{n}(-1)^{k+1}\frac{n!}{k(n-k)!}\ f^{(n-k)}(x)\ \color{red}{x^{-k}}\\
\end{align*}$$
The red $x^{-k}$ is what I think the question may be missing, but I could be wrong.