$(1).$ Show that: $$ \lim_{s\to0^+}\,\left[\sum_{n=1}^{\infty}\cos\left(\pi\frac{n}{m}\right)\frac{1}{n^s}\right]=\color{red}{-\frac{1}{2}} \quad\colon\space\forall\,m\in\mathbb{N}^{+}\tag{1} $$ $(2).$ Find a closed-form for: $$ \lim_{s\to0^+}\,\left[\sum_{n=1}^{\infty}\sin\left(\pi\frac{n}{m}\right)\frac{1}{n^s}\right]=\color{red}{\,\,\,\,?\,\,\,\,} \quad\colon\space\,\,\,\,m\in\mathbb{N}^{+}\tag{2} $$
Both series converge by Dirichlet's test for $\mathrm{Re}(s)>0$.
I could not find a good reason way the first series shall converge to the same constant!!
Thanks for you help.