Where did I go wrong? (preferably a logical explanation instead of "this isn't how you use (insert name) rule) \begin{align*} &\lim_{x\to 0}\frac{ 1 -\cos x }{x²}\\ =&\lim_{x\to 0}\frac{ 1 -\cos x }{(x-0)\cdot(x-0)}\\ =&\lim_{x\to 0}\frac{\sin x }{x-0}\\ =&\lim_{x\to 0}\cos x\\ =&1. \end{align*}
-
2Have you considered using L'Hopital's rule? – JacobCheverie Oct 10 '18 at 12:59
-
I assume you wanted to apply the rule of L'Hôpital. In that case $(x^2)' = 2x$. – Ingix Oct 10 '18 at 12:59
-
Please see the format for typesetting. – creative Oct 10 '18 at 13:00
-
1What was the magic in between second and third equality ?? – Anik Bhowmick Oct 10 '18 at 13:20
3 Answers
The second equality doesn't hold. If you are using L'Hopital's rule, you should do\begin{align}\lim_{x\to0}\frac{1-\cos x}{x^2}&=\lim_{x\to0}\frac{\sin x}{2x}\\&=\frac12\lim_{x\to0}\frac{\sin x}x\\&=\frac12.\end{align}
Another possibility is:\begin{align}\lim_{x\to0}\frac{1-\cos x}{x^2}&=\lim_{x\to0}\frac{2\sin^2\left(\frac x2\right)}{x^2}\\&=\frac12\lim_{x\to0}\frac{\sin^2\left(\frac x2\right)}{\left(\frac x2\right)^2}\\&=\frac12\left(\lim_{x\to0}\frac{\sin\left(\frac x2\right)}{\frac x2}\right)^2\\&=\frac12.\end{align}
- 427,504
Actually $$\lim_{x \to 0} \frac{1-\cos x}{x\cdot x} = \lim_{x \to 0}\frac{\sin x}{2x}. $$ However, it is not necessary to use de l'Hôpital rule:$$\begin{align}\lim_{x \to 0} \frac{1-\cos x}{x^2}&=\lim_{x \to 0}\frac{1-\cos^2x}{x^2(1+\cos x)}\\ &= \lim_{x \to 0} \frac{\sin^2 x}{x^2}\frac{1}{1+\cos x} \\&= \frac{1}{2}.\end{align} $$
- 177,126
- 8,230
You have an indeterminate form.
Using L'Hopital's Rule, take the derivative of numerator and denominator, transforming your limit to:
\begin{align}\lim_{x\to0}\dfrac{1-\cos{x}}{x^2}=\lim_{x\to0}\dfrac{\sin{x}}{2x}\end{align}
This is another indeterminate form. Another iteration of L'Hopital's Rule implies:
\begin{align}\lim_{x\to0}\dfrac{\sin{x}}{2x} = \lim_{x\to0}\dfrac{\cos{x}}{2}\end{align}
Upon substitution of $x=0$,
\begin{align}\lim_{x\rightarrow0}\dfrac{\cos{x}}{2}=\dfrac{1}{2}\end{align}
- 1,040