4

Suppose $g:[0,1]\to\mathbb R$ such that $g\in C^1$ (i.e., $g'$ exists and is continuous). I want to show $$\lim_{n\to+\infty }\int_0^1x^ndg(x)=0.$$ Thanks.

user 1591719
  • 44,216
  • 12
  • 105
  • 255
M.H
  • 11,498
  • 3
  • 30
  • 66

2 Answers2

6

This is trivial by Lebesgue dominated convergence theorem.

And pretty straightforward as follows. Let $M$ be the max of $|g'|$ on $[0,1]$. Then $$ |\int_0^1x^ng'(x)dx|\leq M\int_0^1 x^ndx=\frac{M}{n+1}. $$ Conclude by the squeeze theorem.

Julien
  • 44,791
3

We use this that yields $$\lim_{n\to+\infty }\left(\frac{1}{n}\times n\int_0^1x^ndg(x)\right)=\lim_{n\to+\infty } \frac{g'(1)}{n}=0$$

user 1591719
  • 44,216
  • 12
  • 105
  • 255