$$\lim_{x \to 0} \frac{\sin x}{\sin(7x)}$$
What I did to compute this limit is use $\sin(A+B) = \sin(A)\cos(B) + \cos(B)\sin(A)$ and $\sin(2A) = 2\sin A\cos A$ repeatedly on $\sin(7x)$:
$$ \begin{align} \sin(7x) &= \sin(6x + x) \\ &= \sin(6x)\cos(x) + \cos(6x)\sin(x) \\ &= (2 \sin(3x)\cos(3x))\cos(x) + \cos(6x)\sin(x) \\ &= \big[2 \sin(x + 2x)\cos(3x)\big]\cos(x) + \cos(6x)\sin(x) \\ &= \Big[2 \Big(\sin (x)\cos(2x) + \cos(x)\sin(2x)\Big)\cos(3x)\Big]\cos(x) + \cos(6x)\sin(x) \\ &= \Big[2 \Big(\sin (x)\cos(2x) + 2\cos^2(x)\sin(x)\Big)\cos(3x)\Big]\cos(x) + \cos(6x)\sin(x) \\ &= 2\sin (x) \Big(\cos(2x) + 2\cos^2(x)\Big)\cos(3x)\cos(x) + \cos(6x)\sin(x) \\ &= \sin x \Big[2 \Big(\cos(2x) + 2\cos^2(x)\Big)\cos(3x)\cos(x) + \cos(6x) \Big] \end{align} $$ This allowed me to cancel the $\sin x$ in the numerator and denominator and compute the limit as $(1/7)$ by direct substitution, but as you can see this is not really a neat way of computing. Are there any other possible approaches?