You can use Inclusion-Exclusion for this. Here's how:
The letters comprise a multiset:
$$\mathfrak{W}_m=\{M^1,I^4,S^4,P^2\}$$
Firstly mark the letters with suffixes thus making them distinguishable (we will divide out duplicate permutations in the result). Thus we have the set:
$$\mathfrak{W}_s=\{M,I_1,I_2,I_3,I_4,S_1,S_2,S_3,S_4,P_1,P_2\}$$
We have, therefore, 4 letters of different kinds.
Then the inclusion-exclusion principle gives (after dividing out permutations of identical letters):
$$\#(\text{valid permutations of $\mathfrak{W}_m$})=\frac{1}{1!4!^22!}\sum_{k=0}^{7} (-1)^kS_k\tag{1}$$
where $S_k$ is the sum of all cardinalities of subset intersections of permutations of $\mathfrak{W}_s$ with at least $k$ ordered adjacent letter pairs of the same kind.
It should be clear that a letter kind with $n$ letters may have $r$ pairs of ordered adjacent letters selected in $\binom{n-1}{r}\frac{n!}{(n-r)!}$ ways: Out of $n!$ permutations we choose $r$ of the $n-1$ adjacent pairs in each. Then divide by the $(n-r)!$ arrangements of the $n-r$ blocks of letters which produce identical selections. Hence:
$$\begin{align}(-1)^kS_k=&(11-k)!\times\\[1ex] &\sum_{k=r_1+r_2+r_3} (-1)^{r_1}\binom{3}{r_1}\frac{4!}{(4-r_1)!}(-1)^{r_2}\binom{3}{r_2}\frac{4!}{(4-r_2)!}(-1)^{r_3}\binom{1}{r_3}\frac{2!}{(2-r_3)!}\, .\end{align}$$
We can see that $(-1)^kS_k$ is equivalent to the $x^{11-k}$ coefficient of the product
$$(11-k)!x\left(\binom{3}{0}\frac{4!}{4!}x^4-\binom{3}{1}\frac{4!}{3!}x^3+\binom{3}{2}\frac{4!}{2!}x^2-\binom{3}{3}\frac{4!}{1!}x\right)^2\left(\binom{1}{0}\frac{2!}{2!}x^2-\binom{1}{1}\frac{2!}{1!}x\right)\, .$$
Thus $(1)$ becomes (using the "find $x^m$ coefficient operator" $[x^m]$):
$$\begin{align}&\left(\sum_{k=0}^{7}(11-k)![x^{11-k}]\right)x\left(\frac{1}{24}x^4-\frac{1}{2}x^3+\frac{3}{2}x^2-x\right)^2\left(\frac{1}{2}x^2-x\right)\\[1ex]
&=\frac{1}{1152} \, 11! - \frac{13}{576} \, 10! + \frac{11}{48} \, 9! - \frac{7}{6} \, 8! + \frac{77}{24} \, 7! - \frac{19}{4} \, 6! + \frac{7}{2} \, 5! - 4!\, ,\end{align}$$
which you may verify is $2016$.