It can be easily shown that for any $x\in(0,1)$ we have
$$ \frac{1+2x+\frac{4x^2}{3}+\frac{8x^3}{21}+\frac{16 x^4}{315}+\frac{32 x^5}{9765}}{1+x+\frac{x^2}{3}+\frac{x^3}{21}+\frac{x^4}{315}+\frac{x^5}{9765}} <1+x < \frac{1+2x+\frac{4x^2}{3}+\frac{8x^3}{21}+\frac{16 x^4}{315}+\frac{32 x^5}{9450}}{1+x+\frac{x^2}{3}+\frac{x^3}{21}+\frac{x^4}{315}+\frac{x^5}{9450}} $$
and in general, by setting $D_m=\prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+\sum_{k=1}^{n}\frac{x^k}{D_k}$,
$$ \frac{p_n(2x)+\frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+\frac{x^{n+1}}{D_{n+1}}}<1+x< \frac{p_n(2x)+\frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+\frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+\frac{1}{D_{n+1}}<\prod_{k\geq 1}\left(1+\frac{1}{2^k}\right)<p_n(1)+\frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ \frac{3326}{1395}<\prod_{k\geq 1}\left(1+\frac{1}{2^k}\right)<\frac{22531}{9450} $$
such that the first figures of the middle term are $\color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $\color{green}{2.384231029\ldots}$.
As a continued fraction
$$ \prod_{k\geq 1}\left(1+\frac{1}{2^k}\right)=\left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,\ldots\right]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,\ldots]$.