The computation below shows that (for $a,b,c \in \mathbb{N}$) the form $$a^2+b^2+c^2+ab+ac+bc$$ covers every odd integer less than $10^5$ except those in $$I= \{ 5, 15, 23, 29, 41, 53, 59, 65, 101, 107, 149, 155, 165, 167, 221, 231, 239, 305, 317, 341, 371, 401, 413, 479, 623, 629, 659, 767, 905, 1001, 1031, 1115, 1397, 1409, 1439, 1751, 1991, 2459, 2543, 4355, 5909, 5969\}.$$
Question: Is it true that the above form covers every odd integer, except those in $I$?
Observation: $2(a^2+b^2+c^2+ab+ac+bc) = (a+b)^2+(a+c)^2+(b+c)^2$.
Application: this answer proves that the form $\| A\|^2$ covers every natural number for $A \in M_3(\mathbb{Z})$.
A positive answer to the above question would prove this result for $A \in M_3(\mathbb{N})$.
Computation
sage: oddmixed(317)
{5, 15, 23, 29, 41, 53, 59, 65, 101, 107, 149, 155, 165, 167, 221, 231, 239, 305, 317, 341, 371, 401, 413, 479, 623, 629, 659, 767, 905, 1001, 1031, 1115, 1397, 1409, 1439, 1751, 1991, 2459, 2543, 4355, 5909, 5969}
Code
# %attach SAGE/3by3.spyx
from sage.all import *
cpdef oddmixed(int r):
cdef int a,b,c,n,i
cdef list L
L=[]
for a in range(r):
for b in range(r):
for c in range(r):
n=a**2+b**2+c**2+a*b+a*c+b*c
if not n in L:
L.append(n)
return set([2*i+1 for i in range(r*r/2)])-set(L)