Let $a_n$ a sequence of real numbers such that $\lim_{n\to +\infty}a_n=A$. Is it true that
$$\lim_{n\to +\infty}\Big(1+\frac{a_n}{n}\Big)^n=e^A?$$
Let $a_n$ a sequence of real numbers such that $\lim_{n\to +\infty}a_n=A$. Is it true that
$$\lim_{n\to +\infty}\Big(1+\frac{a_n}{n}\Big)^n=e^A?$$
Assuming $\;A\;$ is finite, use arithmetic of limits and the basic fact that
$$c_n\xrightarrow[n\to\infty]{}\infty \implies\left(1+\frac1{c_n}\right)^{c_n}\xrightarrow[n\to\infty]{}e$$
to deduce that
$$\left(1+\frac{a_n}n\right)^n=\left[\left(1+\frac1{\frac n{a_n}}\right)^{\frac n{a_n}}\right]^{a_n}\xrightarrow[n\to\infty]{}e^A$$
Can you see what happens if $\;\lim a_n=\pm\infty\;$ ?