Does $S = \sum_{n=1}^{\infty}(-1)^n (e- (1+ \frac{1}{n})^n)$ converge or diverge?
My attempt : I know that $e = \lim_{n\rightarrow \infty}( 1+ \frac{1}{n})^n$.
Now put the value e in given series $S$ , I got $\sum_{n=1}^{\infty}(-1)^n (e- (1+ \frac{1}{n})^n)= \sum_{n=1}^{\infty}(-1)^n (e- e)=0$
so the given series is converges
is it correct????