How can I prove that $$\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1+\frac{1}{2}+...+\frac{1}{n}.$$
I tried an induction but couldn't prove that $$\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k} \binom{n+1}{k} = \frac{1}{n+1}+\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k}.$$ Thanks.