Let $$u(x_1,x_2)=\frac{1}{n^2}\sin(nx_1)\sinh(nx_2)$$
with $(x_1,x_2) \in \mathbb{R}^2$. What happens to $u$ as $n \to +\infty.$ ?
This is what I tried to do : $$-\frac{1}{n^2}\sinh(nx_2)\le u(x_1,x_2)\le\frac{1}{n^2}\sinh(nx_2)$$ but I don't know how to conclude.
Thanks.