Evaluate $$\lim_{n\to\infty}\left[\left(\frac1n\right)^n+\left(\frac2n\right)^n+\cdots+\left(\frac{n-1}n\right)^n+\left(\frac nn\right)^n\right]$$
I tried to solve this by taking logs on both sides and got this form: $$\log l = \lim_{n\to\infty} n\log\frac{n!}{n^n}=\lim_{n\to\infty}n\log\frac{n!}{n^n}$$ After applying limit, $\frac{n!}{n^n}\to0$, so $\log\frac{n!}{n^n}\to-\infty$ as $n\to\infty$. Then I am stuck. How to solve these type of problems?