Let $ (a_{n})$ be positive sequence, $a,x \in R \quad $ and $ \lim_{n\to\infty} n^{x}a_{n}=a$.
Prove that $\lim_{n\to\infty} n^{x}(a_{1}a_{2}\ldots a_{n})^{\frac{1}{n}}=ae^x$
I know that $\lim_{n\to\infty} (a_{1}a_{2}\ldots a_{n})^{\frac{1}{n}}=\lim_{n\to\infty} a_{n}$ but don't have idea how to use it