Show $\frac{\Gamma((n-1)/2)}{\Gamma(n/2)} \approx \frac{\sqrt{2}}{\sqrt{n-2}}$
Try
Using the facts:
- $(1 + \alpha/m)^m = e^\alpha ( 1+ r_m)$, where $\lim_{m \to \infty} \sqrt{m}r_m = 0$
- $\Gamma(n+1) = n^{n + 1/2} e^{-n} \sqrt{2 \pi} (1 + r_n)$, where $\lim_{n \to \infty} \sqrt{n}r_n = 0$
Note :
$$ \begin{aligned} \frac{\Gamma((n-1)/2)}{\Gamma(n/2)} &= \frac{\left(\frac{n-3}{2}\right)^{(n-2)/2} e^{-(n-3)/2}(\sqrt{2\pi}(1 + r_{1n})}{\left(\frac{n-2}{2}\right)^{(n-1)/2} e^{-(n-2)/2}(\sqrt{2\pi}(1 + r_{2n})} \\ &=\left( \left(\frac{n-3}{n-2}\right)^{(n-2)/2} \sqrt{e} \frac{1+r_{1n}}{1 + r_{2n}} \right) \times \frac{\sqrt{2}}{\sqrt{n-2}} \end{aligned} $$
But I'm stuck at how I should proceed to eliminate the $\left( \left(\frac{n-3}{n-2}\right)^{(n-2)/2} \sqrt{e} \frac{1+r_{1n}}{1 + r_{2n}} \right)$ term.