- $\sigma_{min} \gt 0 \Rightarrow det\ G \neq 0$ is proved using contrapositive. Note that all singular values are real and non-negative, so $\sigma_{min} \neq 0 \Leftrightarrow \sigma_{min} \gt 0$.
$$
\begin{align}
det\ G = 0 &\Rightarrow 0\text{ is an eigenvalue of }G\\
&\Rightarrow \exists v \neq 0 \text{ s.t. } Gv=0\\
&\Rightarrow \exists v \neq 0 \text{ s.t. } G^*Gv = 0 = 0.v\\
&\Rightarrow \sigma_{min} = 0
\end{align}
$$
$det\ G \neq 0 \Rightarrow \sigma_{min} \gt 0$ using contrapositive.
$$
\begin{align}
\sigma_{min} \not\gt 0 &\Rightarrow \sigma_{min}=0\\
&\Rightarrow \exists v \neq 0 \text{ s.t. } G^*Gv = 0\\
&\Rightarrow \exists v \neq 0 \text{ s.t. } Gv=0 \text{ or } G^*w = 0 \text{ where }w=Gv \neq 0\\
&\Rightarrow G \text{ is not injective and hence singular}\\
&\Rightarrow det\ G=0
\end{align}
$$
- If $\sigma_{min} \not\gt 0$, then $G$ is not invertible as proved in 1. So assume all singular values of $G$, $\sigma_{1},...,\sigma_m$ are non-zero. Writing the SVD of $G$ as $G=U\Sigma V^*$, we get $G^{-1}=V\Sigma^{-1}U^*$.
Clearly $\Sigma^{-1}=diag(\frac{1}{\sigma_1},...,\frac{1}{\sigma_m})$ contains the singular values of $G^{-1}$ along the diagonal. Hence $\sigma_{max}[G]=max\{\frac{1}{\sigma_1},...,\frac{1}{\sigma_m}\}=\frac{1}{\sigma_{min}}$
The other 2 inequalities involve more complex proofs. I will leave here pointers to find those:
This follows from a more general property: $\sigma_i(A+B) \geqslant \sigma_i(A) - \sigma_1(B)$, where $\sigma_i$'s are in decreasing order. From this it directly follows $\sigma_{min}[I+G] \geqslant \sigma_{min}[I] - \sigma_1[G] = 1 - \sigma_{max}[G] \quad [\text{all singular values of I are 1}]$
This also follows from a more general property (sometimes refered to as Horn's
lemma) which states that: $\prod_{i=1}^{k}\sigma_i[G_1G_2] \leqslant \prod_{i=1}^{k}\sigma_i[G_1]\sigma_i[G_2]$. If both $G_1$ and $G_2$ are square matrices of size $n$, the equality holds for $k=n$.
In your case, just taking $i=1$, proves the required result.
The proofs of both these inequalities can be found in: R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991